

Mathematics Department

Ordinary Differential Equations – Math331

Number: _____

First Exam

First Semester 2019 – 2020

_Section: _

Name: Key_

Section	Instructor	Day	Time	
1	Ala Talahmeh	SM	10:00 - 11:15	
2	Alaeddin Elayyan	SM	11:25 - 12:40	
3	Muna Abu Alhalawa	TR	10:00 - 11:15	
4	Abdelrahim Mousa	TR	12:50 - 14:05	
5	Ala Talahmeh	TR	11:25 - 12:40	
6	Abdelrahim Mousa	MW	10:00 - 11:15	
7	Alaeddin Elayyan	sw	12:50 - 14:05	

Question One (26 points) Circle the most correct answer:

- 1. The differential equation $\frac{dy}{dx} y^2 + y = 0$ is
 - (a) not exact
 - (b) separable
 - (c) Bernoulli
 - (d) All of the above
- 2. The DE $2xy \, dx + (x^2 y^2) \, dy = 0$ is
 - (a) exact
 - (b) linear
 - (c) separable
 - (d) exact and separable
- 3. Suppose the change on a temperature of a hot cup obeys to Newton's law of cooling. The hot cup initially has a temperature of 100F and brought to a room with temperature 30F. If the temperature of the cup becomes 65F in ln2 minutes, then the temperature of the cup after ln7 minutes is
 - (a) 50F
 - **(b)** 20*F*
 - (c) 40F
 - (d) 30F

4. The integrating factor of the DE $(x^2 - xy)y' = y^2 - 3xy$, x > 0 is

- (a) y
- **(b)** *x*
- (c) xy
- (d) None of the above

5. The DE $ty' - y \ln \frac{y}{t} = 5t, t > 0$ is

- (a) 1st order, linear, homogeneous ODE
- (b) 1st order, linear, non-homogeneous ODE
- (c) 1st order, non-linear, non-homogeneous ODE
- (d) 1^{st} order, non-linear, homogeneous ODE

6. The IVP: $\frac{dx}{dt} = \sqrt{x}$, x(0) = 1

- (a) has more than two solution
- (b) has a unique solution
- (c) has no solution
- (d) has two solutions

7. If $y' - 2y = e^t$, y(0) = 2, then $y(\ln 2) =$

- (a) 0
- **(b)** 2
- (c) 5

(d) 10

8. The half-life time of a radioactive material is $\ln 8$ years. After $\ln 64$ years, this material becomes 10 gm. The initial amount of this material is

- (a) 32 gm
- **(b)** 40 gm
- (c) 24 gm
- (**d**) 12 gm

- 9. If y(x) solves the IVP: $y' y^2 + y = 0$, y(0) = -1, then, $\lim_{x \to \infty} y(x) = 0$
 - (a) 0
 - **(b)** -1
 - **(c)** 1
 - (d) -∞
- 10. The behavior of solution diverges in the DE
 - (a) y' = 1 + y
 - **(b)** y' = 1 y
 - (c) y' + 2y = -2
 - (d) y' + 3 = -y
- 11. The largest interval in which the solution of the IVP $(\ln t)y' + \frac{1}{(t-3)}y = t^2$, y(2) = 4 is defined
 - (a) (1,3)
 - **(b)** (3,∞)
 - (c) (0,3)
 - (d) $(0, \infty)$
- 12. If y(t) solves the DE $y' t^3y = y^2$, then the slope of y(t) at the point (1,2) is
 - (a) 2
 - **(b)** 4
 - (c) 6
 - (**d**) 0
- 13. The solution of the IVP y'-3y-9=0, y(0)=1 is
 - (a) $y(t) = e^{3t}$
 - **(b)** $y(t) = 2e^{3t} 1$
 - (c) $y(t) = 3e^{3t} 2$
 - (d) $y(t) = 4e^{3t} 3$

Mathematics Department

Ordinary Differential Equations – Math331

First	Exam

<u>First Semester 2019 – 2020</u>

Name:	Key	B	Number:	Section:

Section	Instructor	Day	Time	
1	Ala Talahmeh	SM	10:00 - 11:15	
2	Alaeddin Elayyan	SM	11:25 - 12:40	
3	Muna Abu Alhalawa	TR	10:00 - 11:15	
4	Abdelrahim Mousa	TR	12:50 - 14:05	
5	Ala Talahmeh	TR	11:25 - 12:40	
6	6 Abdelrahim Mousa		10:00 - 11:15	
7 Alaeddin Elayyan		sw	12:50 - 14:05	

Question One (26 points) Circle the most correct answer:

- 1. The IVP: $\frac{dx}{dt} = \sqrt{x}$, x(0) = 1
 - (a) has more than two solution
 - (b) has a unique solution
 - (c) has no solution
 - (d) has two solutions

2. If
$$y' - 2y = e^t$$
, $y(0) = 2$, then $y(\ln 2) =$

- (a) 0
- **(b)** 2
- (c) 5
- (d) 10
- 3. The half-life time of a radioactive material is ln 8 years. After ln 64 years, this material becomes 10 gm. The initial amount of this material is
 - (a) 32 gm
 - (b) 40 gm
 - (c) 24 gm
 - (d) 12 gm

- 4. If y(x) solves the IVP: $y' y^2 + y = 0$, y(0) = -1, then, $\lim_{x \to \infty} y(x) = 0$
 - (a) 0
 - **(b)** -1
 - **(c)** 1
 - (d) -∞
- 5. The behavior of solution diverges in the DE
 - (a) y' = 1 + y
 - **(b)** y' = 1 y
 - (c) y' + 2y = -2
 - (d) y' + 3 = -y
- 6. The largest interval in which the solution of the IVP $(\ln t)y' + \frac{1}{(t-3)}y = t^2$, y(2) = 4 is defined
 - (a) (1,3)
 - **(b)** (3,∞)
 - (c) (0,3)
 - (d) $(0,\infty)$
- 7. If y(t) solves the DE $y' t^3y = y^2$, then the slope of y(t) at the point (1,2) is
 - (a) 2
 - **(b)** 4
 - (c) 6
 - **(d)** 0
- 8. The solution of the IVP y'-3y-9=0, y(0)=1 is
 - (a) $y(t) = e^{3t}$
 - **(b)** $y(t) = 2e^{3t} 1$
 - (c) $y(t) = 3e^{3t} 2$
 - $(\mathbf{d}) y(t) = 4e^{3t} 3$

- 9. The DE $2xy \, dx + (x^2 y^2) \, dy = 0$ is
 - (a) exact
 - (b) linear
 - (c) separable
 - (d) exact and separable
- 10. The DE $ty' y \ln \frac{y}{t} = 5t, t > 0$ is
 - (a) 1st order, linear, homogeneous ODE
 - (b) 1st order, linear, non-homogeneous ODE
 - (c) 1st order, non-linear, non-homogeneous ODE
 - (d) 1^{st} order, non-linear, homogeneous ODE
- 11. The differential equation $\frac{dy}{dx} y^2 + y = 0$ is
 - (a) not exact
 - (b) separable
 - (c) Bernoulli
 - (d) All of the above
- 12. The integrating factor of the DE $(x^2 xy)y' = y^2 3xy$, x > 0 is
 - (a) y
 - (b) x
 - (c) xy
 - (d) None of the above
- 13. Suppose the change on a temperature of a hot cup obeys to Newton's law of cooling. The hot cup initially has a temperature of 100F and brought to a room with temperature 30F. If the temperature of the cup becomes 65F in $\ln 2$ minutes, then the temperature of the cup after $\ln 7$ minutes is
 - (a) 50F
 - **(b)** 20*F*
 - (c) 40F
 - (**d**) 30*F*

Question Two (7 points) Find an explicit solution for the IVP:

$$\frac{dy}{dx} = \frac{y(x-y)}{x^2}$$
, $y(1) = -1$, $x > 0$

Homogenuus

$$\mathcal{J} = \frac{y}{x} - \left(\frac{y}{x}\right)^2$$

Let
$$V = \frac{y}{x} \Rightarrow y' = x v' + V$$

$$\times V' + \chi' = \chi - V^2 \implies -\bar{v}^2 dV = \frac{dx}{x}$$

$$\frac{1}{V} = \ln x + C \Rightarrow V = \frac{1}{\ln x + C}$$

$$\frac{y}{x} = \frac{1}{\ln x + c}$$

$$(1) \qquad y(x) = \frac{x}{\ln x - 1}$$

Question Two (7 points) Find an explicit solution for the IVP:

Benoulli

$$\frac{dy}{dx} = \frac{y(x-y)}{x^2}$$
, $y(1) = -1$, $x > 0$

$$n=2$$
, $p(x) = \frac{-1}{x}$, $q(x) = \frac{-1}{x^2}$

$$\int_{1}^{\infty} \sqrt{1 + (1-n) \rho(x)} V = (1-n) q(x)$$

$$\sqrt{1 + \frac{1}{x}} V = \frac{1}{x^{2}}$$

$$(1 \qquad M(x) = e^{\int \frac{1}{x} dx} = \ln x = x$$

$$V(x) = \frac{1}{x} \left[\int M(x) g(x) dx + c \right]$$

$$= \frac{1}{x} \left[\ln x + c \right]$$

$$\begin{cases} \frac{1}{y} = \frac{\ln x + c}{x} \\ \frac{1}{y} = \frac{x}{\ln x + c} \end{cases}$$

$$C = -1$$

Question Three (8 points) Solve the IVP:

$$xy^3 + (x^2y^2 + 1)y' = 0,$$
 $y(2) = 1,$ $x > 0,$ $y > 0$

$$\begin{cases} M = xy^3 \implies My = 3xy^2 & \text{not exact} \\ N = x^2y^2 + 1 \implies N_x = 2xy^2 \end{cases}$$

$$\frac{My - Mx}{M} = \frac{3xy^2 - 2xy^2}{xy^3} = \frac{1}{y}$$

$$I(y) = e^{\int \frac{1}{y} dy} = e^{\ln y} = \frac{1}{y}$$

$$M = xy^2 \Rightarrow My = 2xy$$

 $N = x^2y + \frac{1}{y} \Rightarrow Nx = 2xy$ Exact

$$(1 \quad \psi = \int \psi_x \, dx = \int M \, dx = \int xy^2 \, dx = \frac{x^2}{2}y^2 + g(y)$$

$$(1 \ y' = x^2y' + g(y) = N = x^2y' + y' \Leftrightarrow g(y) = \ln y$$

$$\frac{1}{2}y^2 + \ln y = C$$

$$C = 2$$

Question Three (8 points) Solve the IVP:

$$xy^3 + (x^2y^2 + 1)y' = 0$$
, $y(2) = 1$, $x > 0$, $y > 0$

$$xy^{3} dx + (x^{2}y^{2}+1) dy = 0$$

 $\frac{dx}{dy} + \frac{1}{y}x = -\frac{1}{y^{3}}x^{1}$

Bernoulli with
$$n=-1$$

$$p(y)=\frac{1}{y}$$

$$q(y)=-\frac{1}{y^3}$$

$$V = X = X$$

$$V' + (1-n) p(y) V = (1-n) q(y)$$

$$(I V + \frac{2}{y} V = \frac{-2}{y^3})$$

$$(V(y) = \frac{1}{y^2} \left[\int y^2 \left(-\frac{2}{y^3} \right) dy + c \right]$$

$$(1 \quad x^2 = \frac{1}{y^2} \left[c - 2 \ln y \right]$$

Question Four (9 points) Given the IVP:

$$y' + \frac{4}{x}y = x^3y^2$$
, $y(1) = \frac{1}{2}$, $x > 0$

- (1) Find the unique solution
- (2) Find the interval where the solution is defined

Bernoulli'
$$n=2, \rho(x)=\frac{4}{x}, q(x)=x^{3}$$

$$V=y^{-n}=\frac{1}{y}$$

$$\begin{array}{c}
\sqrt{1 + (1-n)} p(x) V = (1-n) q(x) \\
\sqrt{1 - \frac{4}{x}} V = -x^{3}
\end{array}$$

$$0 \left(\sqrt{-\frac{4}{x}} \right) = -x^{3}$$

(1)
$$M(x) = e^{\int -\frac{4}{x} dx} = e^{-\frac{4}{nx}} = \frac{1}{x^4}$$

(1
$$y(x) = \frac{1}{x^4 [2 - \ln x]}$$

Question Five (10 points) A tank of capacity 200 gal has initially 0.1 gm of toxic wastes dissolved in 80 gal of water. Water with toxic wastes starts flow into the tank at rate 4 gal/min and flow out at rate 2 gal/min. The incoming water contains $\frac{1}{4}$ gm/gal of toxic wastes.

- (a) Write IVP that models the change of toxic wastes in the tank over time.
- (b) Find the amount of toxic wastes in the tank at any time.
- (c) Find the amount of toxic wastes in the tank when it becomes to overflow.

[2]
$$\frac{d\varphi}{dt} = (\frac{1}{4})(4) - (2)\frac{\varphi}{80+2t}$$
, $\varphi(0)=0.1$

(1 b)
$$Q' + \frac{2}{80+2t}Q = 1$$

$$1 \qquad M = e^{\frac{2}{80+2t}} = e^{\ln(80+2t)} = 80 + 2t$$

$$Q = \frac{1}{80+2t} \left[\int (80+2t)dt + C \right]$$

$$Q(60) = \frac{1}{80 + 2(60)} \left[80(60) + (60)^{2} + 8 \right]$$

Question Five (10 points) A tank of capacity 200 gal has initially 0.1 gm of toxic wastes dissolved in 80 gal of water. Water with toxic wastes starts flow into the tank at rate 4 gal/min and flow out at rate 2 gal/min. The incoming water contains $\frac{1}{4}$ gm/gal of toxic wastes.

- (a) Write IVP that models the change of toxic wastes in the tank over time.
- (b) Find the amount of toxic wastes in the tank at any time.
- (c) Find the amount of toxic wastes in the tank when it becomes to overflow.

(2+(1)
$$Q' = 1 - \frac{Q}{40+t}$$
, $Q_0 = 0.1$
(1 B) $Q' + \frac{1}{40+t} Q = 1$
 $M = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(2 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(3 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(4 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(5 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(60) $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(60) $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(60) $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(1 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(2 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$
(3 $Q = \frac{1}{40+t} \left[\int (40+t) dt + C \right]$